metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.63D10, (C23×C4).5D5, (C22×C20)⋊21C4, (C23×C20).3C2, (C22×C4)⋊7Dic5, (C22×C10).192D4, (C22×C4).407D10, C5⋊4(C23.34D4), C23.82(C5⋊D4), C23.30(C2×Dic5), C22.62(C4○D20), (C23×C10).98C22, C23.302(C22×D5), C10.10C42⋊23C2, C10.67(C42⋊C2), (C22×C20).483C22, (C22×C10).362C23, C22.19(C23.D5), C22.49(C22×Dic5), C10.68(C22.D4), C2.4(C23.23D10), (C22×Dic5).65C22, C2.11(C23.21D10), (C2×C20).454(C2×C4), C2.5(C2×C23.D5), (C2×C10).548(C2×D4), (C2×C4).66(C2×Dic5), C22.86(C2×C5⋊D4), (C2×C10).90(C4○D4), C10.110(C2×C22⋊C4), (C2×C23.D5).17C2, (C22×C10).203(C2×C4), (C2×C10).293(C22×C4), (C2×C10).173(C22⋊C4), SmallGroup(320,838)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.63D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=bcd, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >
Subgroups: 590 in 218 conjugacy classes, 87 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C23×C4, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23.34D4, C23.D5, C22×Dic5, C22×C20, C22×C20, C23×C10, C10.10C42, C2×C23.D5, C23×C20, C24.63D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic5, D10, C2×C22⋊C4, C42⋊C2, C22.D4, C2×Dic5, C5⋊D4, C22×D5, C23.34D4, C23.D5, C4○D20, C22×Dic5, C2×C5⋊D4, C23.21D10, C23.23D10, C2×C23.D5, C24.63D10
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 73)(20 74)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 141)(39 142)(40 143)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 90)(50 91)(51 92)(52 93)(53 94)(54 95)(55 96)(56 97)(57 98)(58 99)(59 100)(60 81)(101 138)(102 139)(103 140)(104 121)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 128)(112 129)(113 130)(114 131)(115 132)(116 133)(117 134)(118 135)(119 136)(120 137)
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 73)(20 74)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 141)(39 142)(40 143)(41 92)(42 93)(43 94)(44 95)(45 96)(46 97)(47 98)(48 99)(49 100)(50 81)(51 82)(52 83)(53 84)(54 85)(55 86)(56 87)(57 88)(58 89)(59 90)(60 91)(101 128)(102 129)(103 130)(104 131)(105 132)(106 133)(107 134)(108 135)(109 136)(110 137)(111 138)(112 139)(113 140)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(120 127)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 121)(58 122)(59 123)(60 124)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)(81 107)(82 108)(83 109)(84 110)(85 111)(86 112)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 107 145 60)(2 90 146 133)(3 105 147 58)(4 88 148 131)(5 103 149 56)(6 86 150 129)(7 101 151 54)(8 84 152 127)(9 119 153 52)(10 82 154 125)(11 117 155 50)(12 100 156 123)(13 115 157 48)(14 98 158 121)(15 113 159 46)(16 96 160 139)(17 111 141 44)(18 94 142 137)(19 109 143 42)(20 92 144 135)(21 108 74 41)(22 91 75 134)(23 106 76 59)(24 89 77 132)(25 104 78 57)(26 87 79 130)(27 102 80 55)(28 85 61 128)(29 120 62 53)(30 83 63 126)(31 118 64 51)(32 81 65 124)(33 116 66 49)(34 99 67 122)(35 114 68 47)(36 97 69 140)(37 112 70 45)(38 95 71 138)(39 110 72 43)(40 93 73 136)
G:=sub<Sym(160)| (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,81)(101,138)(102,139)(103,140)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136)(120,137), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139)(113,140)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,145,60)(2,90,146,133)(3,105,147,58)(4,88,148,131)(5,103,149,56)(6,86,150,129)(7,101,151,54)(8,84,152,127)(9,119,153,52)(10,82,154,125)(11,117,155,50)(12,100,156,123)(13,115,157,48)(14,98,158,121)(15,113,159,46)(16,96,160,139)(17,111,141,44)(18,94,142,137)(19,109,143,42)(20,92,144,135)(21,108,74,41)(22,91,75,134)(23,106,76,59)(24,89,77,132)(25,104,78,57)(26,87,79,130)(27,102,80,55)(28,85,61,128)(29,120,62,53)(30,83,63,126)(31,118,64,51)(32,81,65,124)(33,116,66,49)(34,99,67,122)(35,114,68,47)(36,97,69,140)(37,112,70,45)(38,95,71,138)(39,110,72,43)(40,93,73,136)>;
G:=Group( (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,81)(101,138)(102,139)(103,140)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136)(120,137), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139)(113,140)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,145,60)(2,90,146,133)(3,105,147,58)(4,88,148,131)(5,103,149,56)(6,86,150,129)(7,101,151,54)(8,84,152,127)(9,119,153,52)(10,82,154,125)(11,117,155,50)(12,100,156,123)(13,115,157,48)(14,98,158,121)(15,113,159,46)(16,96,160,139)(17,111,141,44)(18,94,142,137)(19,109,143,42)(20,92,144,135)(21,108,74,41)(22,91,75,134)(23,106,76,59)(24,89,77,132)(25,104,78,57)(26,87,79,130)(27,102,80,55)(28,85,61,128)(29,120,62,53)(30,83,63,126)(31,118,64,51)(32,81,65,124)(33,116,66,49)(34,99,67,122)(35,114,68,47)(36,97,69,140)(37,112,70,45)(38,95,71,138)(39,110,72,43)(40,93,73,136) );
G=PermutationGroup([[(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,73),(20,74),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,141),(39,142),(40,143),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,90),(50,91),(51,92),(52,93),(53,94),(54,95),(55,96),(56,97),(57,98),(58,99),(59,100),(60,81),(101,138),(102,139),(103,140),(104,121),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,128),(112,129),(113,130),(114,131),(115,132),(116,133),(117,134),(118,135),(119,136),(120,137)], [(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,73),(20,74),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,141),(39,142),(40,143),(41,92),(42,93),(43,94),(44,95),(45,96),(46,97),(47,98),(48,99),(49,100),(50,81),(51,82),(52,83),(53,84),(54,85),(55,86),(56,87),(57,88),(58,89),(59,90),(60,91),(101,128),(102,129),(103,130),(104,131),(105,132),(106,133),(107,134),(108,135),(109,136),(110,137),(111,138),(112,139),(113,140),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(120,127)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,121),(58,122),(59,123),(60,124),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160),(81,107),(82,108),(83,109),(84,110),(85,111),(86,112),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,107,145,60),(2,90,146,133),(3,105,147,58),(4,88,148,131),(5,103,149,56),(6,86,150,129),(7,101,151,54),(8,84,152,127),(9,119,153,52),(10,82,154,125),(11,117,155,50),(12,100,156,123),(13,115,157,48),(14,98,158,121),(15,113,159,46),(16,96,160,139),(17,111,141,44),(18,94,142,137),(19,109,143,42),(20,92,144,135),(21,108,74,41),(22,91,75,134),(23,106,76,59),(24,89,77,132),(25,104,78,57),(26,87,79,130),(27,102,80,55),(28,85,61,128),(29,120,62,53),(30,83,63,126),(31,118,64,51),(32,81,65,124),(33,116,66,49),(34,99,67,122),(35,114,68,47),(36,97,69,140),(37,112,70,45),(38,95,71,138),(39,110,72,43),(40,93,73,136)]])
92 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 5A | 5B | 10A | ··· | 10AD | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | Dic5 | D10 | D10 | C5⋊D4 | C4○D20 |
kernel | C24.63D10 | C10.10C42 | C2×C23.D5 | C23×C20 | C22×C20 | C22×C10 | C23×C4 | C2×C10 | C22×C4 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 4 | 2 | 1 | 8 | 4 | 2 | 8 | 8 | 4 | 2 | 16 | 32 |
Matrix representation of C24.63D10 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 25 | 0 | 0 |
0 | 0 | 0 | 21 | 0 |
0 | 0 | 0 | 0 | 2 |
9 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 39 |
0 | 0 | 0 | 21 | 0 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,18,0,0,0,0,0,25,0,0,0,0,0,21,0,0,0,0,0,2],[9,0,0,0,0,0,0,18,0,0,0,16,0,0,0,0,0,0,0,21,0,0,0,39,0] >;
C24.63D10 in GAP, Magma, Sage, TeX
C_2^4._{63}D_{10}
% in TeX
G:=Group("C2^4.63D10");
// GroupNames label
G:=SmallGroup(320,838);
// by ID
G=gap.SmallGroup(320,838);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,422,184,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=b*c*d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations