Copied to
clipboard

G = C24.63D10order 320 = 26·5

3rd non-split extension by C24 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.63D10, (C23×C4).5D5, (C22×C20)⋊21C4, (C23×C20).3C2, (C22×C4)⋊7Dic5, (C22×C10).192D4, (C22×C4).407D10, C54(C23.34D4), C23.82(C5⋊D4), C23.30(C2×Dic5), C22.62(C4○D20), (C23×C10).98C22, C23.302(C22×D5), C10.10C4223C2, C10.67(C42⋊C2), (C22×C20).483C22, (C22×C10).362C23, C22.19(C23.D5), C22.49(C22×Dic5), C10.68(C22.D4), C2.4(C23.23D10), (C22×Dic5).65C22, C2.11(C23.21D10), (C2×C20).454(C2×C4), C2.5(C2×C23.D5), (C2×C10).548(C2×D4), (C2×C4).66(C2×Dic5), C22.86(C2×C5⋊D4), (C2×C10).90(C4○D4), C10.110(C2×C22⋊C4), (C2×C23.D5).17C2, (C22×C10).203(C2×C4), (C2×C10).293(C22×C4), (C2×C10).173(C22⋊C4), SmallGroup(320,838)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.63D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C23.D5 — C24.63D10
C5C2×C10 — C24.63D10
C1C23C23×C4

Generators and relations for C24.63D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=bcd, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >

Subgroups: 590 in 218 conjugacy classes, 87 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C23×C4, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23.34D4, C23.D5, C22×Dic5, C22×C20, C22×C20, C23×C10, C10.10C42, C2×C23.D5, C23×C20, C24.63D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic5, D10, C2×C22⋊C4, C42⋊C2, C22.D4, C2×Dic5, C5⋊D4, C22×D5, C23.34D4, C23.D5, C4○D20, C22×Dic5, C2×C5⋊D4, C23.21D10, C23.23D10, C2×C23.D5, C24.63D10

Smallest permutation representation of C24.63D10
On 160 points
Generators in S160
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 73)(20 74)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 141)(39 142)(40 143)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 90)(50 91)(51 92)(52 93)(53 94)(54 95)(55 96)(56 97)(57 98)(58 99)(59 100)(60 81)(101 138)(102 139)(103 140)(104 121)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 128)(112 129)(113 130)(114 131)(115 132)(116 133)(117 134)(118 135)(119 136)(120 137)
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 73)(20 74)(21 144)(22 145)(23 146)(24 147)(25 148)(26 149)(27 150)(28 151)(29 152)(30 153)(31 154)(32 155)(33 156)(34 157)(35 158)(36 159)(37 160)(38 141)(39 142)(40 143)(41 92)(42 93)(43 94)(44 95)(45 96)(46 97)(47 98)(48 99)(49 100)(50 81)(51 82)(52 83)(53 84)(54 85)(55 86)(56 87)(57 88)(58 89)(59 90)(60 91)(101 128)(102 129)(103 130)(104 131)(105 132)(106 133)(107 134)(108 135)(109 136)(110 137)(111 138)(112 139)(113 140)(114 121)(115 122)(116 123)(117 124)(118 125)(119 126)(120 127)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 139)(56 140)(57 121)(58 122)(59 123)(60 124)(61 141)(62 142)(63 143)(64 144)(65 145)(66 146)(67 147)(68 148)(69 149)(70 150)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)(81 107)(82 108)(83 109)(84 110)(85 111)(86 112)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 107 145 60)(2 90 146 133)(3 105 147 58)(4 88 148 131)(5 103 149 56)(6 86 150 129)(7 101 151 54)(8 84 152 127)(9 119 153 52)(10 82 154 125)(11 117 155 50)(12 100 156 123)(13 115 157 48)(14 98 158 121)(15 113 159 46)(16 96 160 139)(17 111 141 44)(18 94 142 137)(19 109 143 42)(20 92 144 135)(21 108 74 41)(22 91 75 134)(23 106 76 59)(24 89 77 132)(25 104 78 57)(26 87 79 130)(27 102 80 55)(28 85 61 128)(29 120 62 53)(30 83 63 126)(31 118 64 51)(32 81 65 124)(33 116 66 49)(34 99 67 122)(35 114 68 47)(36 97 69 140)(37 112 70 45)(38 95 71 138)(39 110 72 43)(40 93 73 136)

G:=sub<Sym(160)| (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,81)(101,138)(102,139)(103,140)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136)(120,137), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139)(113,140)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,145,60)(2,90,146,133)(3,105,147,58)(4,88,148,131)(5,103,149,56)(6,86,150,129)(7,101,151,54)(8,84,152,127)(9,119,153,52)(10,82,154,125)(11,117,155,50)(12,100,156,123)(13,115,157,48)(14,98,158,121)(15,113,159,46)(16,96,160,139)(17,111,141,44)(18,94,142,137)(19,109,143,42)(20,92,144,135)(21,108,74,41)(22,91,75,134)(23,106,76,59)(24,89,77,132)(25,104,78,57)(26,87,79,130)(27,102,80,55)(28,85,61,128)(29,120,62,53)(30,83,63,126)(31,118,64,51)(32,81,65,124)(33,116,66,49)(34,99,67,122)(35,114,68,47)(36,97,69,140)(37,112,70,45)(38,95,71,138)(39,110,72,43)(40,93,73,136)>;

G:=Group( (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,94)(54,95)(55,96)(56,97)(57,98)(58,99)(59,100)(60,81)(101,138)(102,139)(103,140)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136)(120,137), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,144)(22,145)(23,146)(24,147)(25,148)(26,149)(27,150)(28,151)(29,152)(30,153)(31,154)(32,155)(33,156)(34,157)(35,158)(36,159)(37,160)(38,141)(39,142)(40,143)(41,92)(42,93)(43,94)(44,95)(45,96)(46,97)(47,98)(48,99)(49,100)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139)(113,140)(114,121)(115,122)(116,123)(117,124)(118,125)(119,126)(120,127), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,139)(56,140)(57,121)(58,122)(59,123)(60,124)(61,141)(62,142)(63,143)(64,144)(65,145)(66,146)(67,147)(68,148)(69,149)(70,150)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,107)(82,108)(83,109)(84,110)(85,111)(86,112)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,107,145,60)(2,90,146,133)(3,105,147,58)(4,88,148,131)(5,103,149,56)(6,86,150,129)(7,101,151,54)(8,84,152,127)(9,119,153,52)(10,82,154,125)(11,117,155,50)(12,100,156,123)(13,115,157,48)(14,98,158,121)(15,113,159,46)(16,96,160,139)(17,111,141,44)(18,94,142,137)(19,109,143,42)(20,92,144,135)(21,108,74,41)(22,91,75,134)(23,106,76,59)(24,89,77,132)(25,104,78,57)(26,87,79,130)(27,102,80,55)(28,85,61,128)(29,120,62,53)(30,83,63,126)(31,118,64,51)(32,81,65,124)(33,116,66,49)(34,99,67,122)(35,114,68,47)(36,97,69,140)(37,112,70,45)(38,95,71,138)(39,110,72,43)(40,93,73,136) );

G=PermutationGroup([[(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,73),(20,74),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,141),(39,142),(40,143),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,90),(50,91),(51,92),(52,93),(53,94),(54,95),(55,96),(56,97),(57,98),(58,99),(59,100),(60,81),(101,138),(102,139),(103,140),(104,121),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,128),(112,129),(113,130),(114,131),(115,132),(116,133),(117,134),(118,135),(119,136),(120,137)], [(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,73),(20,74),(21,144),(22,145),(23,146),(24,147),(25,148),(26,149),(27,150),(28,151),(29,152),(30,153),(31,154),(32,155),(33,156),(34,157),(35,158),(36,159),(37,160),(38,141),(39,142),(40,143),(41,92),(42,93),(43,94),(44,95),(45,96),(46,97),(47,98),(48,99),(49,100),(50,81),(51,82),(52,83),(53,84),(54,85),(55,86),(56,87),(57,88),(58,89),(59,90),(60,91),(101,128),(102,129),(103,130),(104,131),(105,132),(106,133),(107,134),(108,135),(109,136),(110,137),(111,138),(112,139),(113,140),(114,121),(115,122),(116,123),(117,124),(118,125),(119,126),(120,127)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,139),(56,140),(57,121),(58,122),(59,123),(60,124),(61,141),(62,142),(63,143),(64,144),(65,145),(66,146),(67,147),(68,148),(69,149),(70,150),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160),(81,107),(82,108),(83,109),(84,110),(85,111),(86,112),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,107,145,60),(2,90,146,133),(3,105,147,58),(4,88,148,131),(5,103,149,56),(6,86,150,129),(7,101,151,54),(8,84,152,127),(9,119,153,52),(10,82,154,125),(11,117,155,50),(12,100,156,123),(13,115,157,48),(14,98,158,121),(15,113,159,46),(16,96,160,139),(17,111,141,44),(18,94,142,137),(19,109,143,42),(20,92,144,135),(21,108,74,41),(22,91,75,134),(23,106,76,59),(24,89,77,132),(25,104,78,57),(26,87,79,130),(27,102,80,55),(28,85,61,128),(29,120,62,53),(30,83,63,126),(31,118,64,51),(32,81,65,124),(33,116,66,49),(34,99,67,122),(35,114,68,47),(36,97,69,140),(37,112,70,45),(38,95,71,138),(39,110,72,43),(40,93,73,136)]])

92 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P5A5B10A···10AD20A···20AF
order12···222224···44···45510···1020···20
size11···122222···220···20222···22···2

92 irreducible representations

dim1111122222222
type++++++-++
imageC1C2C2C2C4D4D5C4○D4Dic5D10D10C5⋊D4C4○D20
kernelC24.63D10C10.10C42C2×C23.D5C23×C20C22×C20C22×C10C23×C4C2×C10C22×C4C22×C4C24C23C22
# reps142184288421632

Matrix representation of C24.63D10 in GL5(𝔽41)

10000
040000
004000
000400
00001
,
400000
040000
004000
000400
000040
,
10000
040000
004000
000400
000040
,
10000
01000
00100
000400
000040
,
400000
018000
002500
000210
00002
,
90000
001600
018000
000039
000210

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,18,0,0,0,0,0,25,0,0,0,0,0,21,0,0,0,0,0,2],[9,0,0,0,0,0,0,18,0,0,0,16,0,0,0,0,0,0,0,21,0,0,0,39,0] >;

C24.63D10 in GAP, Magma, Sage, TeX

C_2^4._{63}D_{10}
% in TeX

G:=Group("C2^4.63D10");
// GroupNames label

G:=SmallGroup(320,838);
// by ID

G=gap.SmallGroup(320,838);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,422,184,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=b*c*d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations

׿
×
𝔽